Surface-modified poly(lactide-co-glycolide) nanospheres for targeted bone imaging with enhanced labeling and delivery of radioisotope.
نویسندگان
چکیده
Surface-modified nanospheres can be utilized for targeting drugs and diagnostic agents to the bone and bone marrow while extending their circulation time in the blood stream. The surface modification of poly(lactide-co-glycolide) (PLGA) nanospheres by radioisotope carrying poly(ethylene oxide)-poly (propylene oxide)-poly (ethylene oxide) triblock copolymers (Poloxamer 407) has been assessed by in vitro characterization and in vivo biodistribution studies after intravenous administration of the nanospheres to the mouse. A hydroxyphenylpropionic acid, a ligand for (125)I and (131)I labeling, was conjugated to the hydroxyl group of the Poloxamer 407 by using dicyclohexyl carbodiimide. The ligand-conjugated Poloxamer 407 was adsorbed onto the surface of PLGA nanospheres. Surface coating was confirmed by measuring both size distribution and the surface charge of the nanospheres. Besides, (125)I-labeling efficiency, radiolabeling stability, whole body imaging, and biodistribution of the radioisotope-labeled nanospheres were examined. Ligand-labeled, surface-modified PLGA nanospheres were in 100-nm size ranges, which may be adequate for long-circulation and further bone imaging. (125)I-labeling efficiency was >90% and was more stable at human serum for 24 h. A noticeable decrease in liver or spleen uptake was obtained by the surface-modified nanospheres. (125)I-labeled nanospheres showed higher blood maintenance and bone uptake compared with stannous colloid with the same size distribution. Therefore, a fully biodegradable, radioisotope-carrying, surface-modified nanosphere system has been developed as a promising tool for targeting bone and bone marrows.
منابع مشابه
Poly(DL-lactide-co-glycolide) Nanospheres for the Sustained Release of Folic Acid
Biodegradable polymers have become the materials of choice for a variety of biomedical applications. In particular, poly(DL-lactide-co-glycolide) nanoparticles have been studied as a material for drug delivery with the controlled release. In this paper we are describing a simple method for obtaining the system for targeted and controlled delivery of folic acid in the body. Folic acid was encaps...
متن کاملImprovements in transfection efficiency with chitosan modified poly(DL-lactide-co-glycolide) nanospheres prepared by the emulsion solvent diffusion method, for gene delivery.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in...
متن کاملEffect of pleurotus sajor-caju polysaccharide encapsulated in poly D, L lactide-co-glycolide nanoparticles for HPV vaccine in murine model
Objective(s): In the current work, poly D, L lactide-co-glycolide (PLGA) particles were applied for a viral vaccine for the delivery of antigens in cytosolic pathway by increasing the antigen presentation to T-lymphocytes. HPV-E7 protein with PLGA particles has been reported as a potent adjuvant for HPV vaccine by encapsulating protein into the PLGA particles. Polysaccharide from Pleurotus sajo...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملSpatioselective Modification of Bicompartmental Polymer Particles and Fibers via Huisgen 1,3-Dipolar Cycloaddition
Precise nanoand microscale control of the architecture of biodegradable biomaterials is desirable for several biotechnological applications such as drug delivery, diagnostics, and medical imaging. Herein, we combine electrohydrodynamic co-jetting and highly specific surface modification (via Huisgen 1,3-dipolar cycloaddition) to prepare particles and fibers with spatioselective surface modifica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 67 3 شماره
صفحات -
تاریخ انتشار 2003